

Lecture 5 Introduction of WRF-HRRR and Mesonet Data

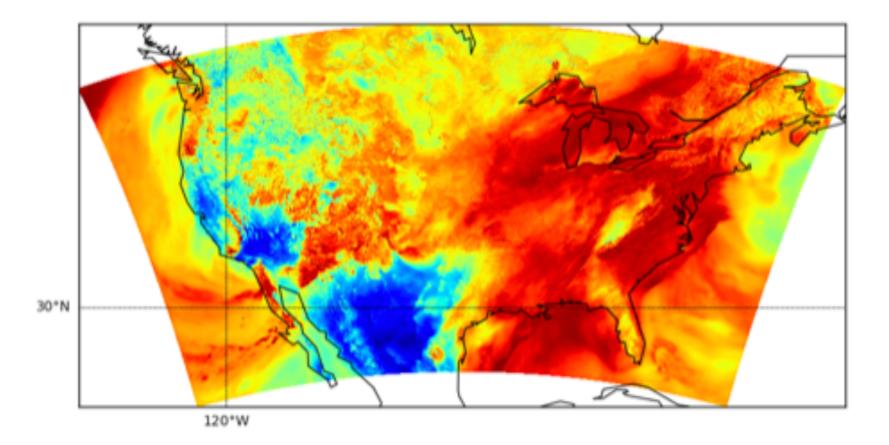
Xu Yuan University of Louisiana at Lafayette

WRF-The Weather Research and Forecasting

- Next generation mesoscale numerical weather prediction system
- It can produce simulations based on actual atmospheric conditions (i.e., from observations and analysis)
- It has been developed since the later of 1990's

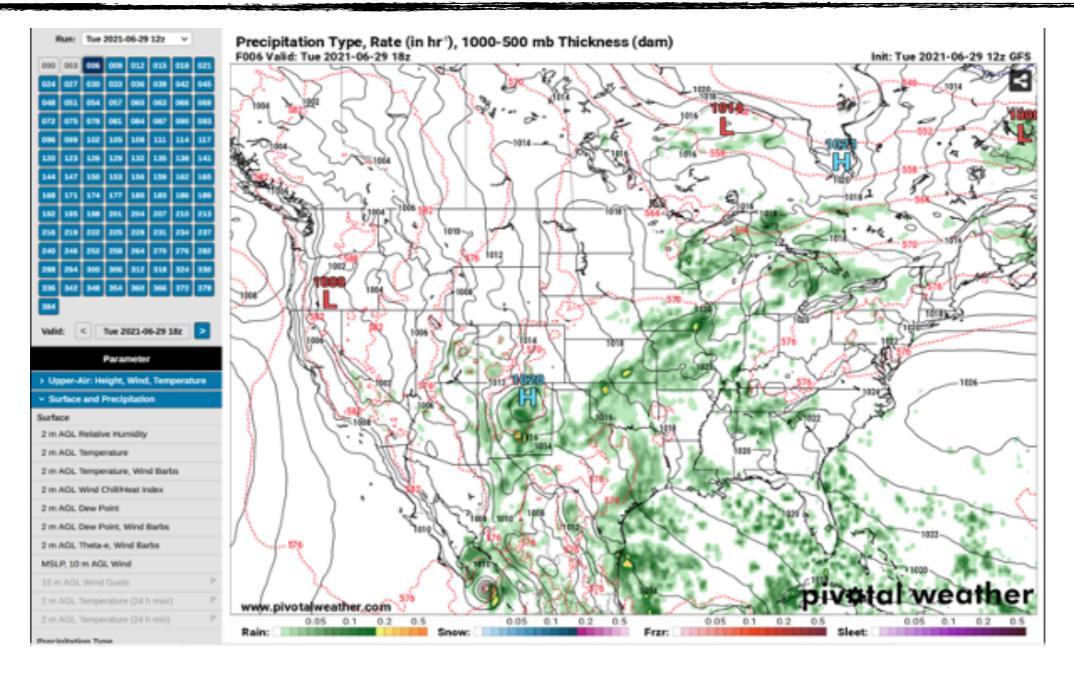
WRF-HRRR

The Weather Research and Forecasting Model with High-resolution Rapid Refresh



Predict hourly weather parameters covering US continent

WRF-HRRR: High-resolution Rapid Refresh



Source: <u>https://www.pivotalweather.com/model.php</u>

WRF-HRRR Data Source

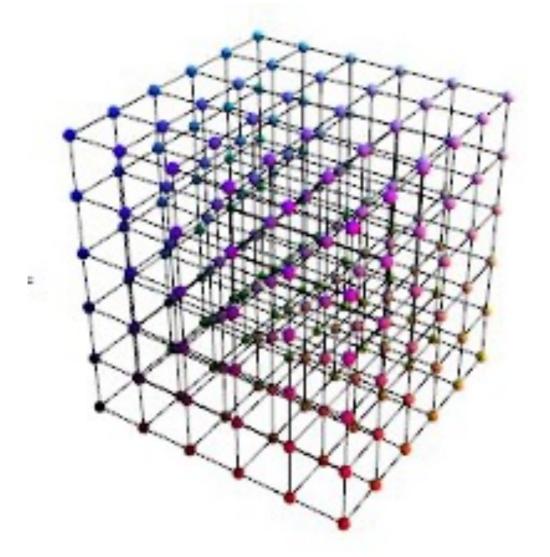
• Source: <u>https://home.chpc.utah.edu/~u0553130/Brian_Blaylock/cgi-bin/hrrr_download.cgi</u>

Tap to download HRRRv4 grib2 from 2021-06-29:

Hour 00	F00	F01	F02	F03	F04	F05	F06	F07	F08	F09	F10	F11	F12	F13	F14	F15	F16	F17	F18	F19	F20	F21	F22	F23	F24	F25	F26	F27	F28	F29	F30	F31	F32	F33	F34
F35 F36	6 F37	7 F3	8 F39	9 F4	0 F4	1 F42	2 F43	3 F44	4 F4	5 F4	6 F4	7 F4	8																						
Hour 01	F00	F01	F02	F03	F04	F05	F06	F07	F08	F09	F10	F11	F12	F13	F14	F15	F16	F17	F18																
Hour 02	F00	F01	F02	F03	F04	F05	F06	F07	F08	F09	F10	F11	F12	F13	F14	F15	F16	F17	F18																
Hour 03	F00	F01	F02	F03	F04	F05	F06	F07	F08	F09	F10	F11	F12	F13	F14	F15	F16	F17	F18																
Hour 04	F00	F01	F02	F03	F04	F05	F06	F07	F08	F09	F10	F11	F12	F13	F14	F15	F16	F17	F18																
Hour 05	F00	F01	F02	F03	F04	F05	F06	F07	F08	F09	F10	F11	F12	F13	F14	F15	F16	F17	F18																
Hour 06	F00	F01	F02	F03	F04	F05	F06	F07	F08	F09	F10	F11	F12	F13	F14	F15	F16	F17	F18	F19	F20	F21	F22	F23	F24	F25	F26	F27	F28	F29	F30	F31	F32	F33	F34
F35 F36	6 F37	7 F3	8 F39	9 F4	0 F4	1 F42	2 F43	3 F44	4 F4	5 F4	6 F4	7 F4	8																						
Hour 07	F00	F01	F02	F03	F04	F05	F06	F07	F08	F09	F10	F11	F12	F13	F14	F15	F16	F17	F18																
Hour 08	F00	F01	F02	F03	F04	F05	F06	F07	F08	F09	F10	F11	F12	F13	F14	F15	F16	F17	F18																
Hour 09	F00	F01	F02	F03	F04	F05	F06	F07	F08	F09	F10	F11	F12	F13	F14	F15	F16	F17	F18																
Hour 10	F00	F01	F02	F03	F04	F05	F06	F07	F08	F09	F10	F11	F12	F13	F14	F15	F16	F17	F18																
Hour 11	F00	F01	F02	F03	F04	F05	F06	F07	F08	F09	F10	F11	F12	F13	F14	F15	F16	F17	F18																
Hour 12	_	_	_	_			_		_	_	_	_		F13	F14	F15	F16	F17	F18	F19	F20	F21	F22	F23	F24	F25	F26	F27	F28	F29	F30	F31	F32	F33	F34
F35 F36	6 F37	7 F3	8 F39	9 F4	0 F4	1 F42	2 F43	3 F44	4 F4	5 F4	6 F4	7 F4	8																						

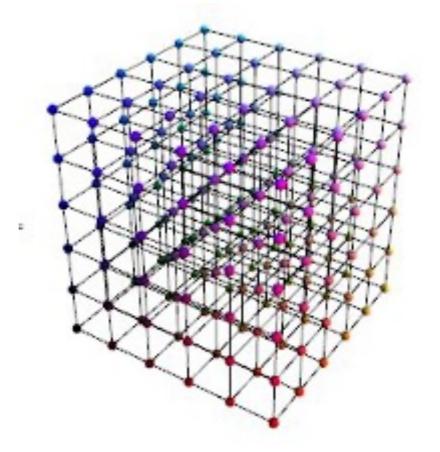
WRF-HRRR Data Format

- HRRR models store data in GRIB format (i.e., 3-D grid), which is a compressed format
- Each Grid is of fixed size, 3km x 3km
 - Covering the United States continent: 1059 x1799 geo-grids



WRF-HRRR Data Format

- Each layer in a GRIB file represents one feature (e.g., temperature), spanning throughput United States
 - Horizon represents locations and vertical represents features
- So all vertically aligned grid points represents the set of features for a particular location
 - The latitude and longitude information are encoded in the GRIB file



148 Parameters = 148 Layers

Examples for Features at Some Layers

Layer	Feature
1	Maximum/Composite radar reflectivity
8	Wind speed (gust)
11	U component of wind
12	V component of wind
13	Geopotential Height
14	Temperature
15	Dew point temperature
57	Surface pressure
66	2 meter temperature
71	10 meter U wind component
72	10 meter V wind component
73	10 meter wind speed

Extracting Weather Conditions at A Location

- The latitude and longitude of the UL Lafayette (ULL) is 30.2126 and -92.0193, respectively
 - How to get the weather conditions at ULL?

• We can fetch the latitude and longitude matrix from GRIB file

• Find the grid point that has the closest distance to ULL

Extracting Weather Conditions at ULL

It_ULL = 30.2126In_ULL = -92.0193gr = pygrib.open('path/to/grib/file')# open filemsg = gr [1]# get layer-1 message (any layer no. works here).It, In = msg.latlons()# extract GPS coordinatedis_mat = (It-I_It_ULL)**2+(In-I_In_ULL)**2# compute distance between each grid point and ULLp_lt, p_ln = numpy.unravel_index(dis_mat.argmir(), dis_mat.shape) # pick smallest distance indexdata = msg.valuesfeature_ULL = data[p_lt,p_ln]

Mesonet

- Comprising a set of automated weather stations located at some specific area in the USA
 - Each station monitors tens of of atmospheric measurements, like temperature, rainfall, wind speed, etc., once per minute
 - South Alabama Mesonet includes a network of 26 weather stations, maintained by Dr. Sytske Kimball, Co-PI of our project
 - Kentucky Mesonet is led by Dr. Eric Rappin, Co-PIs of our project

South Alabama Mesonet

• Data is publicly available at: <u>http://chiliweb.southalabama.edu/</u> <u>archived_data.php</u>

- A combination of selectable features for a given range of date is available for downloading
- Dataset includes 60 features, excluding time, date, and location
- Data are in CSV format

South Alabama Mesonet

South Alabama Mesonet

Temperature (soil - 5 depths and above the surface at 1.5, 2, 9.5, and 10 m).

Relative Humidity (above the surface at 2 and 10 m).

Horizontal Wind Speed and Direction (2 and 10 m).

```
Vertical Wind Speed (10 m).
```

Atmospheric Pressure.

Rainfall.

Solar Radiation (Total Radiation and PAR).

Example

	Select IV	leteorological Data to D	UMINOAU	
Begin Date: 2021-06-0 End Date: 2021-06-2 St	ation / Agricola	ormat: CSV Fixed Download		
Segin Date. 2021-00-0 End Date. 2021-00-2 St	Andalusia	Download		
Select/Deselect All	Ashford			
Record Id	Ashford North			
Table Code	Atmore Bay Minette			
	Bay Minette FS			
Year	Bayou La Batre			
Month	Castleberry			
Day of Month	Dauphin Island Dixie			
Day of Year	Elberta			
Hour	Fairhope Florala			
Minute	Foley			
Station Id	Gasque Geneva			
Latitude	Grand Bay			
Longitude	Jay Kinston			
Elevation	Leakesville			
Sign	Loxley Mobile (Dog River)			
Door open indicator	Mobile (USA Campus)			
Battery Voltage	Mobile (USA Campus West) Mount Vernon			
	Pascagoula			
Observations in the last minute	Poarch Creek			
Precipitation over the last minute (TB3)	Robertsdale Saraland			
Precipitation over the last minute (TX)	Walnut Hill			

Source: <u>http://chiliweb.southalabama.edu/archived_data.php</u>

WRF-HRRR verus Mesonet

	Parameters	Resolution	Frequency	Height	Accuracy	Future Prediction
WRF with HRRR	148	3 km * 3 km	1 hour	Upper air	Low	Yes
Mesonet	60	single point	1 minute	Near-surface	High	No

By incorporating the two datasets, we develop Deep Learning approach to predict the future weather conditions.

The good thing here is that you don't need to label the data.

Comparing to Twitter Data

• Twitter Data

- Unstructured
- Classification on purpose
- Classification based on spam patterns: feature extraction
- No ground truth
- Binary classification

• Weather Data

- Structured
- Prediction on purpose
- All features (weather parameters) have been provided
- ▶ No ground truth
- Time-series Prediction

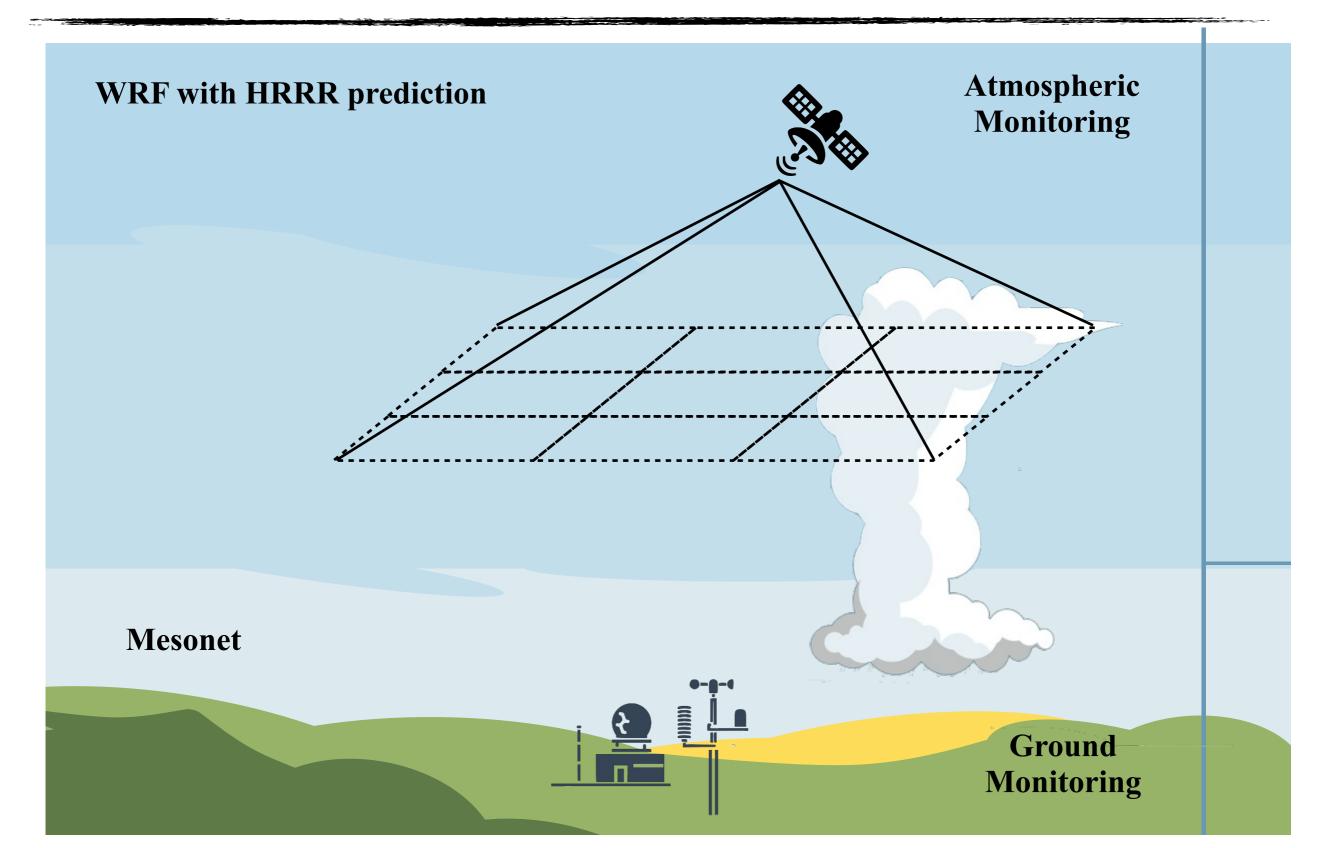
Machine Learning Modelets for Weather Forecasting

Xu Yuan University of Louisiana at Lafayette

Outline

- Background
- Micro Model
- Micro-Macro Model
- Experiments

Background



Background

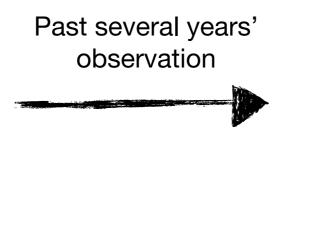
Only for hourly prediction and its prediction accuracy is far from satisfaction

	Parameters	Resolution Frequen		Height	Accuracy	Future Prediction	
WRF with HRRR	148	3 km * 3 km	1 hour	Upper air	Low	Yes	
Mesonet	60	single point	1 minute	Near-surface	High	No	

Gathering the current near-surface measurements, unable to predict future values

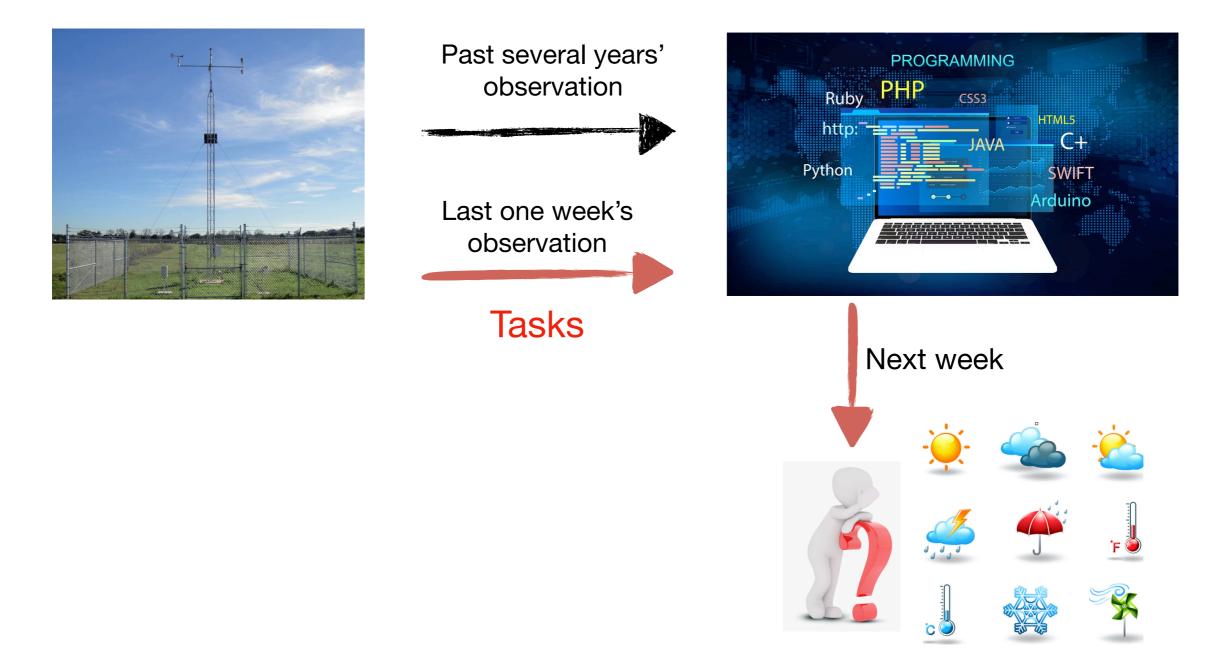
Weather Forecasting Problem

• Suppose a Mesonet station monitors the weather conditions for the past several years, then based on this information, a computer program can learn and predict the weather conditions in next several days.



Weather Forecasting Problem

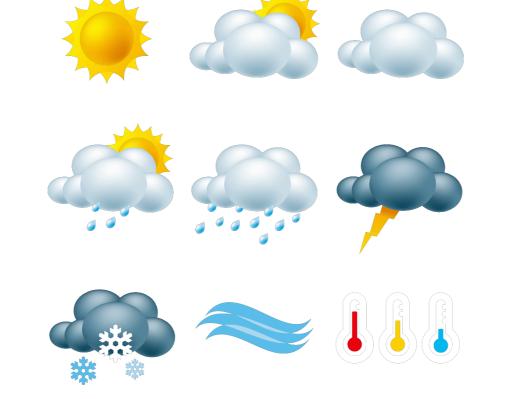
• Suppose a Mesonet station monitors the weather conditions for the past several years, then based on this information, a computer program can learn and predict the weather conditions in next several days.



Our Goal: Fine-grained Weather Predication

• Flexible Fine-grained Temporal Domain Prediction

- Extracting the temporal variation features from the past measurements
- Making precise prediction in the next few time horizons
- Enabling flexible temporal resolution as desired, say 5 minutes, 10 minutes ...



Weather Conditions

• Continuous changes with time

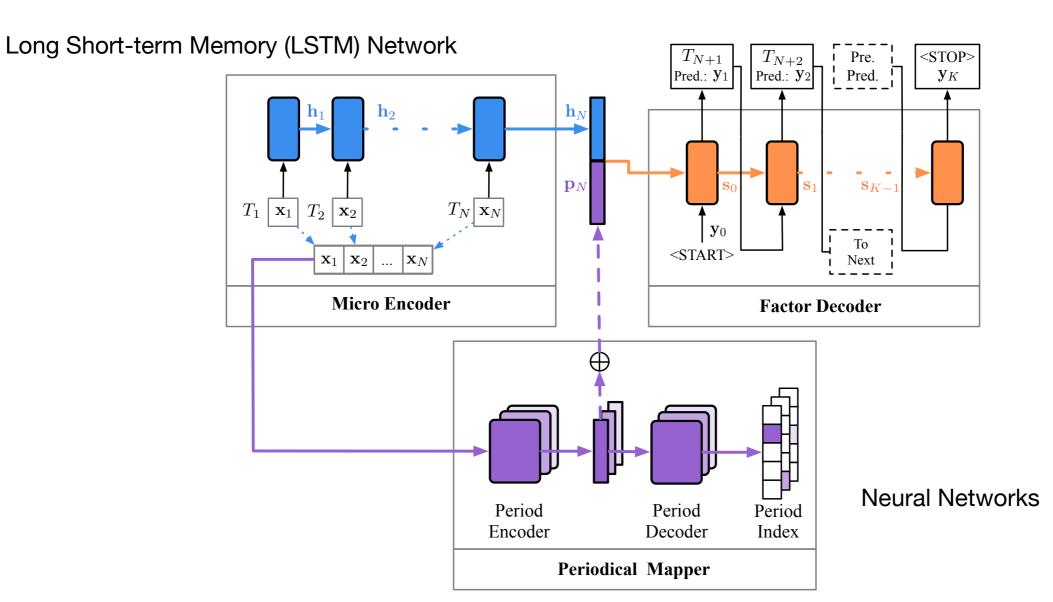
- Having the time sequential patterns
- Periodical patterns

• Different from twitter data, whereas

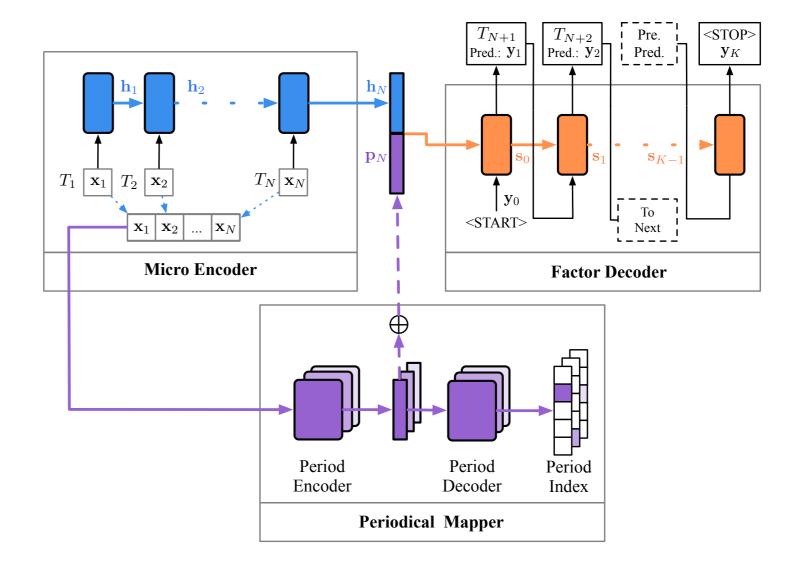
- All tweets are independent
- Less temporal domain relations

• Micro Model

- Micro Encoder: capturing the sequential temporal patterns
- Periodical Mapper: extracting the periodical patterns
- Factor Decoder: Forecasting a set of weather parameters in the next few short time horizons

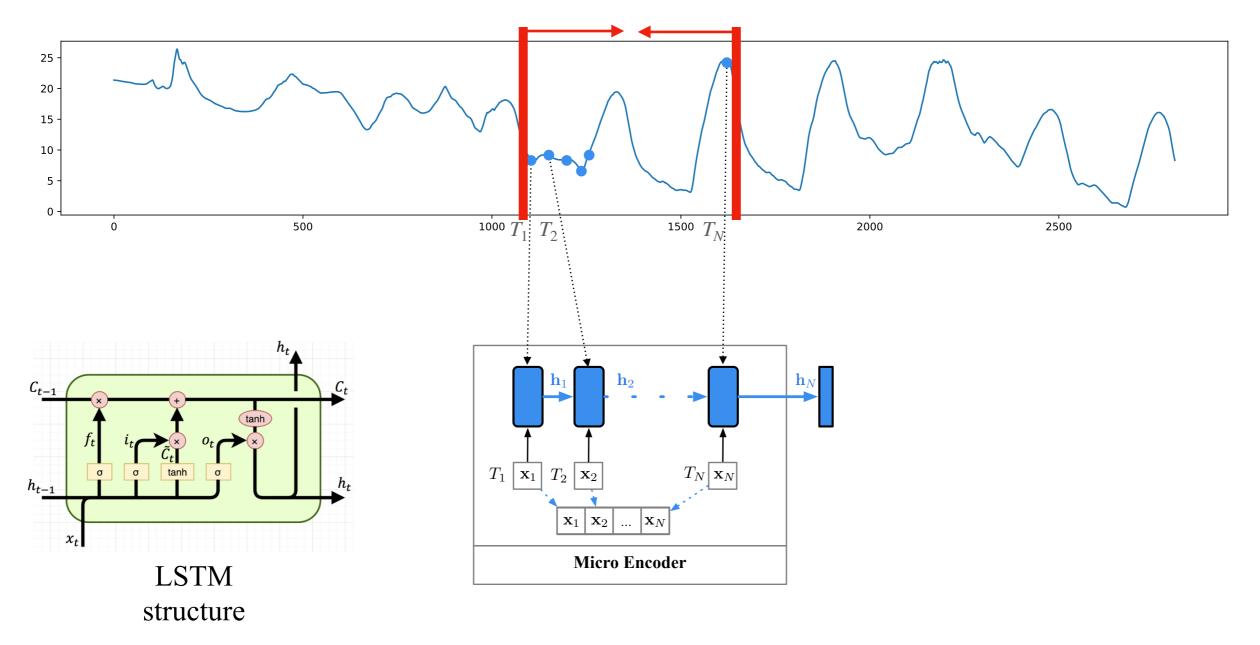


- Micro Model
 - Micro Encoder
 - Periodical Mapper
 - Factor Decoder



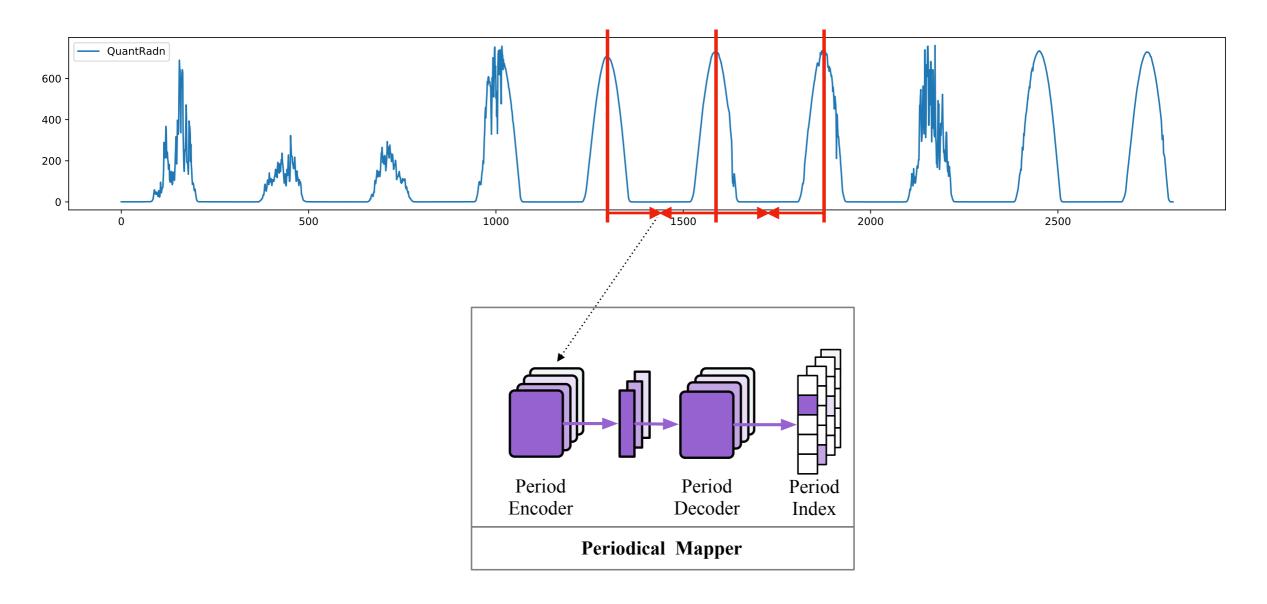
• Micro Encoder

Encode the temporal sequence data in a certain period into one single dense vector.



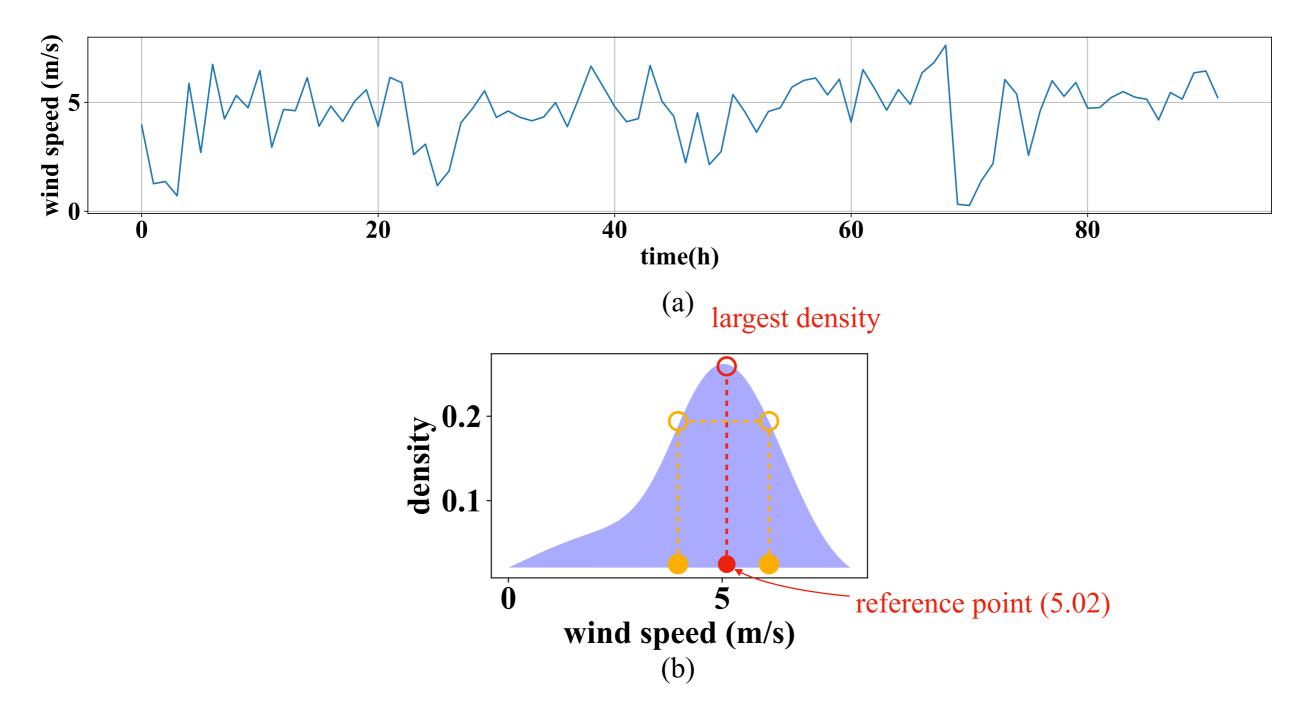
• Periodical Mapper (1)

Extracting the periodical patterns

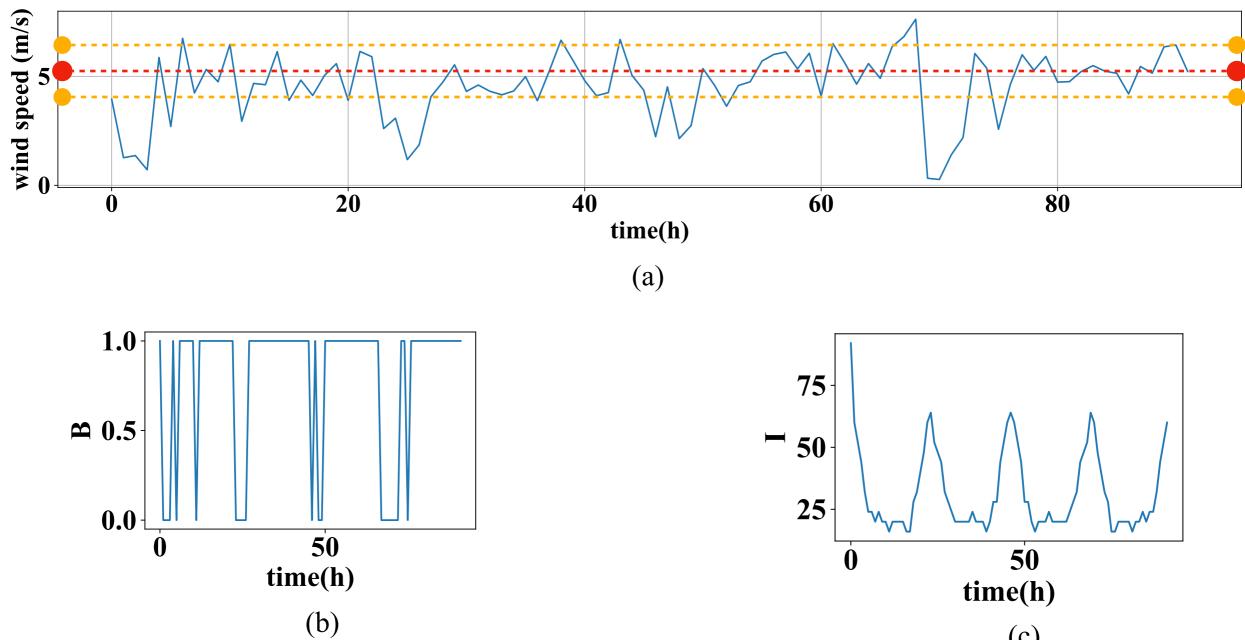


• Periodical Mapper (2)

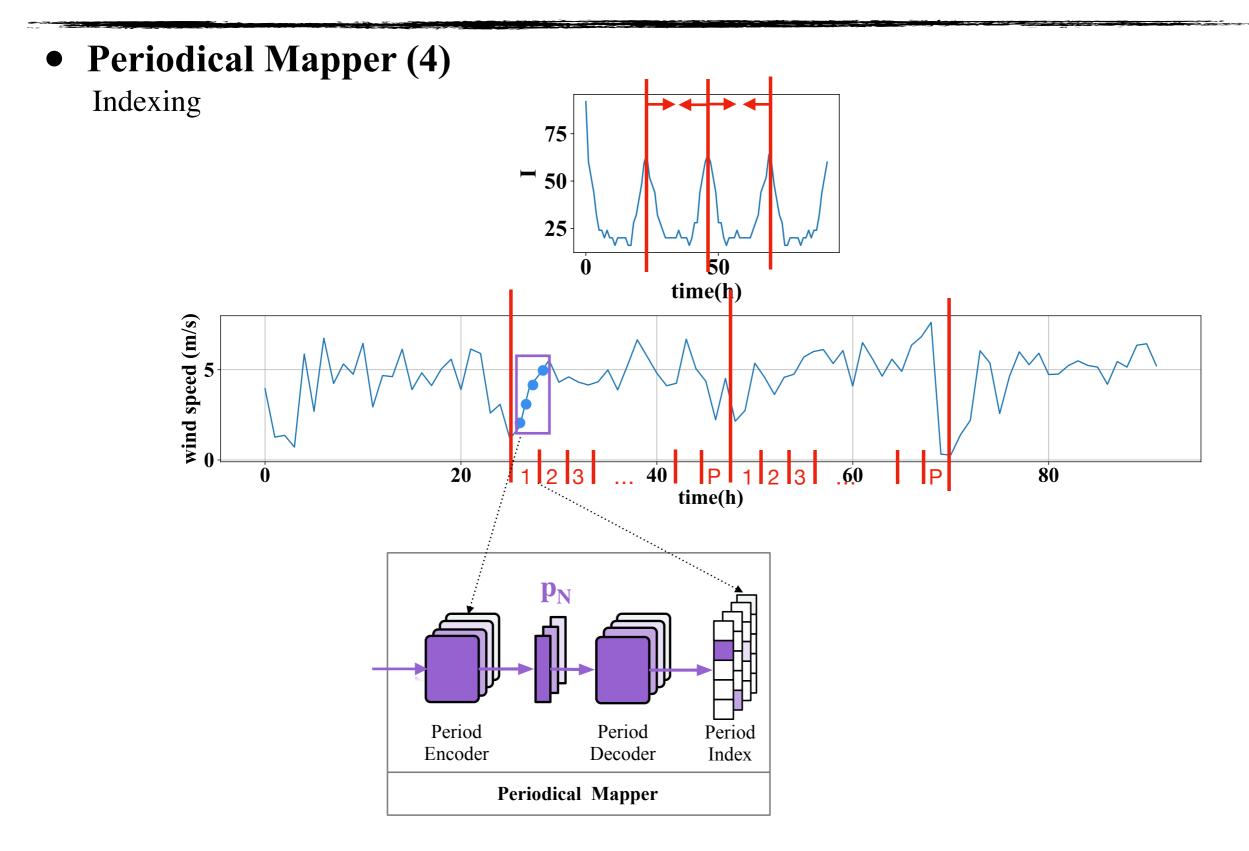
Reference points and reference area.



Periodical Mapper (3) Binarization and Periodic Correlation.

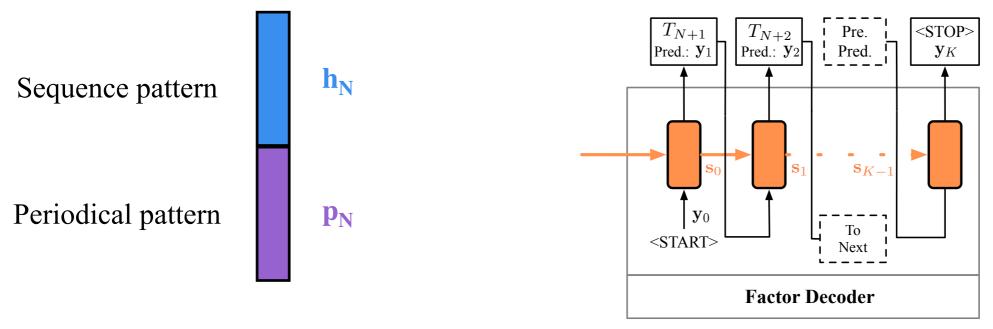


(c)



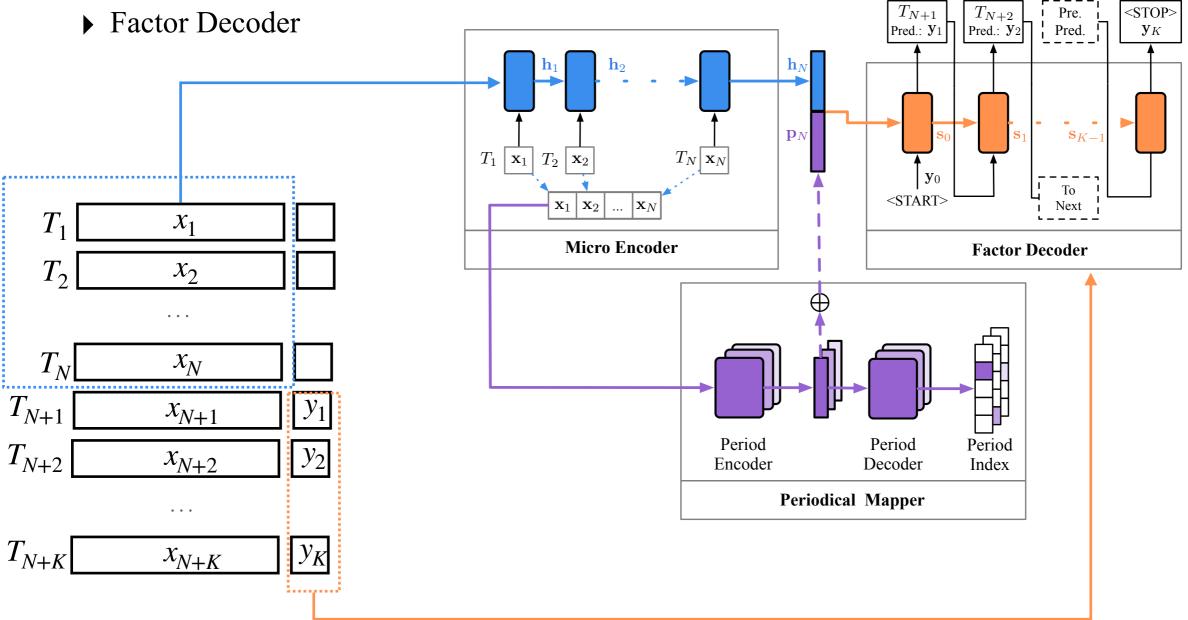
• Micro Decoder

Predict weather parameters.



Encoder hidden vector

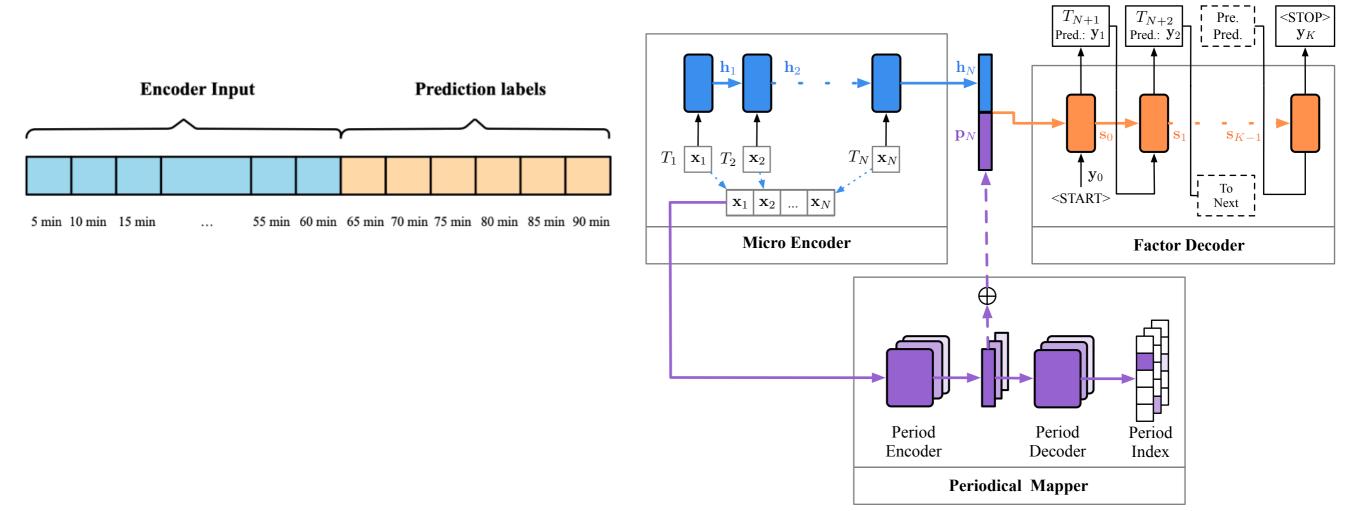
- **Micro Model**
 - Micro Encoder
 - Periodical Mapper
 - Factor Decoder



Micro — Training Phase

• Data Labeling

- Select the most relevant parameters for predicting each specific weather parameter
- Take previous years' measurements as the ground truth
- Take each (N x T)-minute data as inputs and label the data in the subsequent M time interval

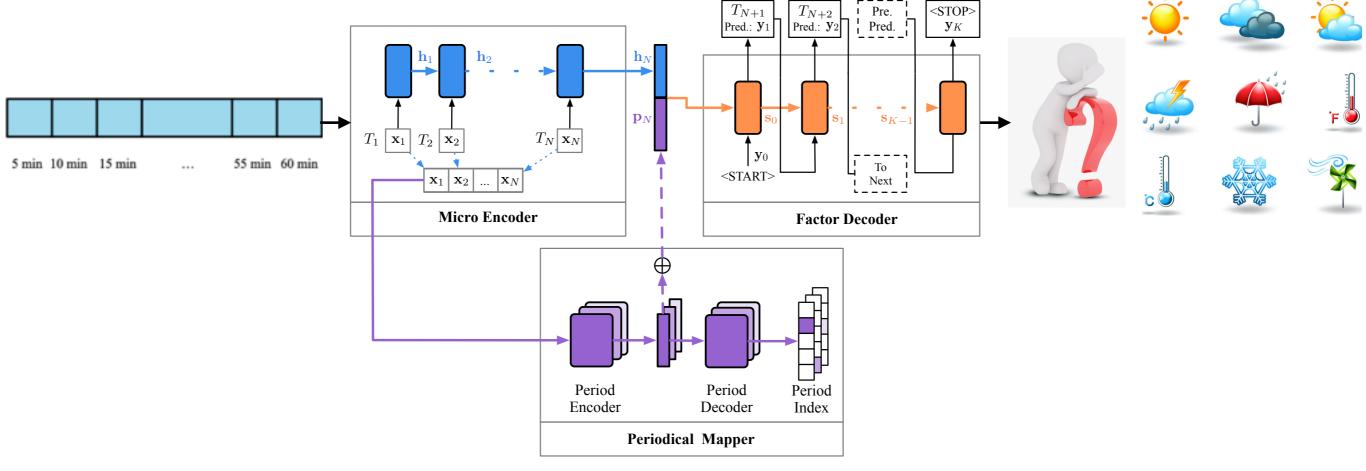


Micro — **Prediction Phase**

• Data Processing

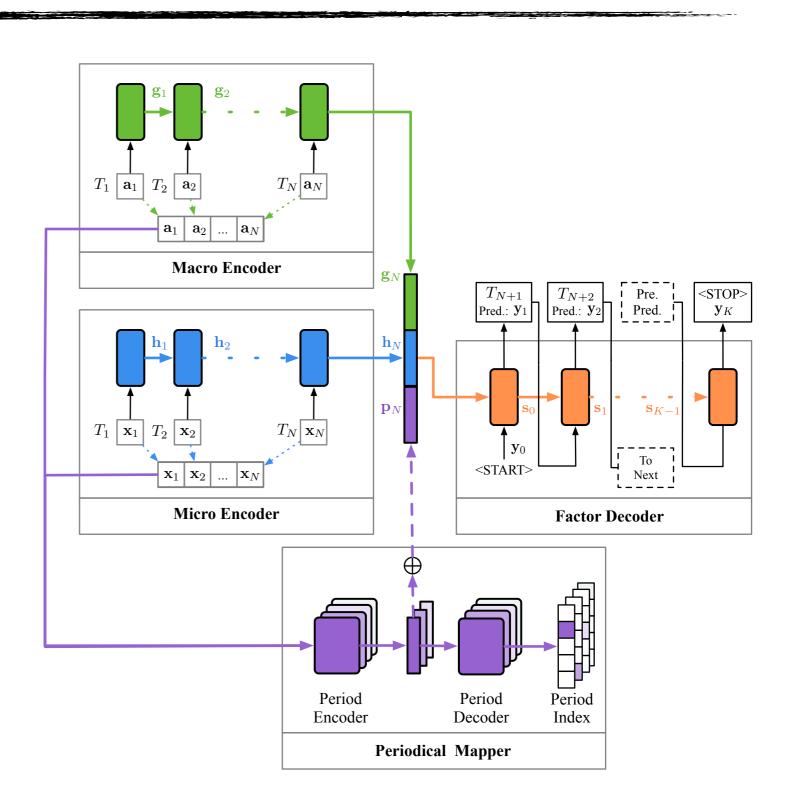
• Take the previous (N x T)-minute data, as input

Prediction:



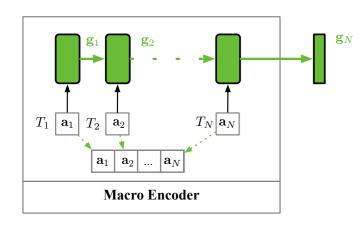
Micro-Macro Model

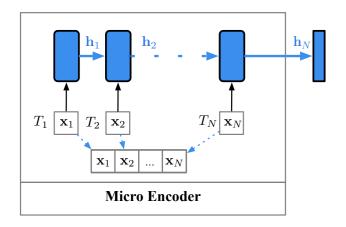
- Micro-Macro Model
 - Micro Encoder
 - Macro Encoder
 - Periodical Mapper
 - Factor Decoder

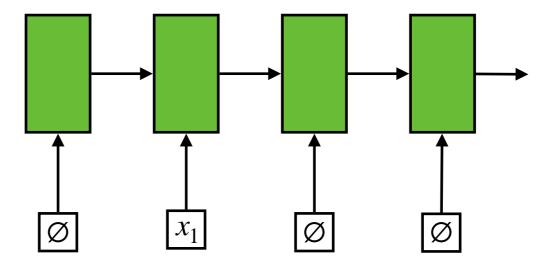


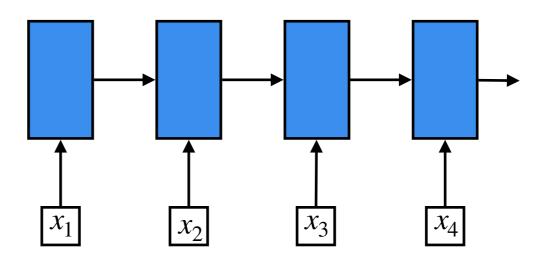
Micro-Macro Model

• Macro Encoder Downscaling



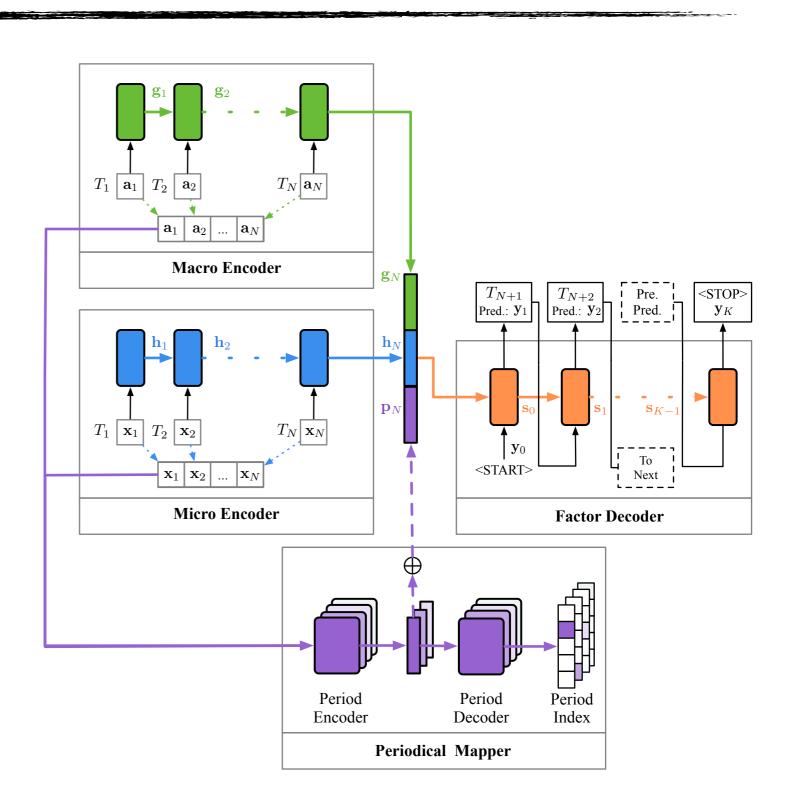






Micro-Macro Model

- Micro-Macro Model
 - Micro Encoder
 - Macro Encoder
 - Periodical Mapper
 - Factor Decoder

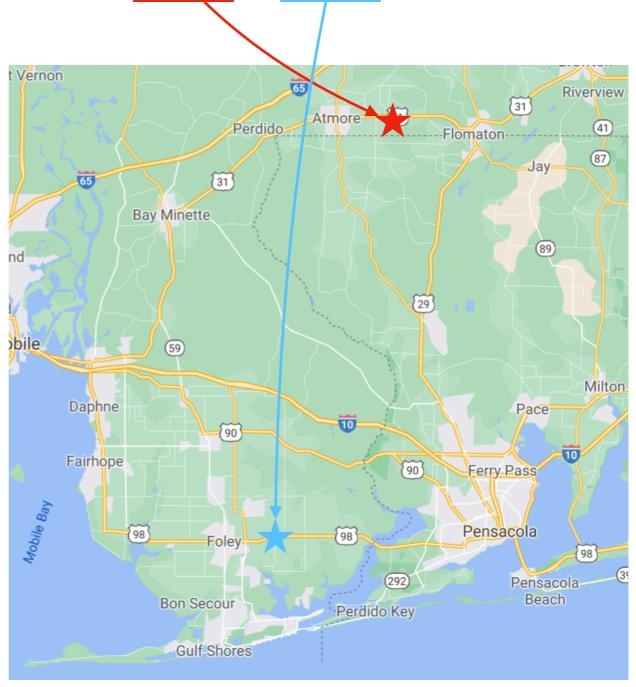


Experiments

• Dataset

- ► SA Mesonet (26 automated weather stations, Atmore and Elberta in this experiment)
- WRF-HRRR
- Training: 2017, 2018
- Test: 2019

Temperature, Humidity, Pressure, Wind speed



Relevant Parameters

	······································		
Predictions	Measurement parameters		
TEMP	Vitel_100cm_d, IRTS_Body, SoilCond, SoilWaCond_tc,	•	
1 EMF	Vitel_100cm_b, eR, wfv, Vitel_100cm_a, SoilCond_tc, RH_10m		
HUMI	Temp_C, Vitel_100cm_d, Vitel_100cm_a, Vitel_100cm_b, AirT_2m, AirT_10m	-	
nom	WndSpd_Vert_Min, SoilT_5cm, Pressure_1, PTemp, IRTS	From Mesone	эt
	RH_10m, SoilCond, Temp_C, Vitel_100cm_d,	Observation	-
PRES	AirT_1pt5m, IRTS_Trgt, PTemp, Vitel_100cm_b, SoilSfcT, AirT_10m		
	WndSpd_2m_WVc_1, WndSpd_10m, WndSpd_2m_Max,	-	
WSPD	WndSpd_Vert_Tot, WndSpd_2m_Std, QuantRadn,		
	WndSpd_2m_WVc_2, WndSpd_Vert, WndSpd_10m_Max, WndDir_2m		

Feature	e ID Description		
9	250hpa U-component of wind (m/s)		
10	250hpa V-component of wind (m/s)		
55	80 meters U-component of wind (m/s)		
56	80 meters V-component of wind (m/s)		
61	Ground moisture (%)	From WRF-HRRR	
71	10 meters U-component of wind (m/s)	Output	
72	10 meters V-component of wind (m/s)		
102	Cloud base pressure (Pa)		
105	Cloud top pressure (Pa)		
116	1000m storm relative helicity (%)		

Overall Performance

	0 to 5	min 5 to 10	min 10 to 15	$5 \min 15$ to 20	min 20 to 25 min	25 to 30 min
TEMI	0.502	0.531	0.564	0.601	0.632	0.670
HUMI	4.431	4.507	4.552	4.707	5.122	5.802
Atmore PRES	1.087	1.133	1.139	1.156	1.184	1.235
WSPI	0.396	0.552	0.572	0.658	0.709	0.833
TEMI	0.424 O	0.468	0.471	0.475	0.479	0.485
HUMI	1.852	1.873	1.893	1.905	1.933	2.015
Elberta PRES	1.075	1.213	1.245	1.309	1.452	1.607
WSPI	0.492	0.528	0.556	0.584	0.614	0.656

$$\text{RMSE} = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \hat{x}_i)^2}{N}}$$

Table 1: Parameter information

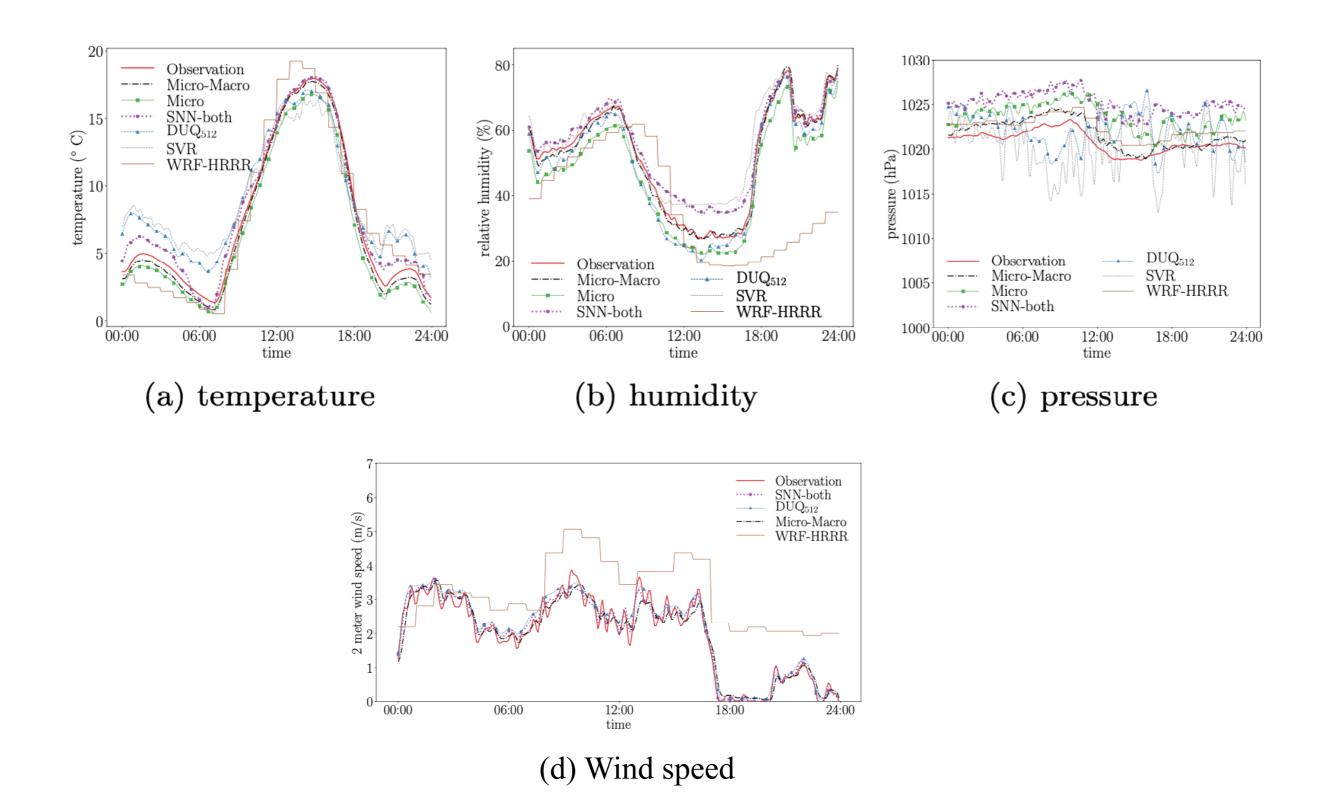
Parameter	Measurement	Mounting Height Measuring Range						
TEMP	Air Temperature	2 m	-40 to 60° C					
HUMI	Relative Humidity	2 m	0 to 100%					
PRES	Atmospheric Pressure	1.5m	600 to 1060 mb					
WSPD	Wind Speed	2 m	0 to 100 m/s					

Comparisons

		Atn	nore		Elberta				
	TEMP	HUMI	PRES	WSPD	TEMP	HUMI	PRES	WSPD	
WRF-HRRR	2.412	20.471	1.648	1.112	1.633	14.296	1.554	1.412	
SVR	3.581	20.507	5.209	1.306	1.734	22.953	6.752	1.887	
SNN-Micro	0.668	9.137	5.373	0.354	1.381	4.387	4.927	0.265	
SNN-both	0.619	7.611	4.959	0.330	0.804	4.250	4.337	0.264	
DUQ_{512}	0.812	5.668	2.714	0.592	0.645	3.524	3.513	0.541	
$\mathrm{DUQ}_{512-512}$	0.657	5.354	2.667	0.585	0.632	3.326	3.225	0.489	
Micro-Macro	0.502	4.431	1.087	0.396	0.424	1.852	1.075	0.492	

RMSE values of different methods for 5-minute prediction

One-day Prediction



Please see our article for details <u>https://prefer-nsf.org/pdf/PREFER_Modelet_Evaluation.pdf</u>